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Three-dimensional motion of a thin vortex filament with axial velocity, embedded in 
an inviscid incompressible fluid, is investigated. The deflections of the core centreline 
are not restricted to be small compared with the core radius. We first derive the 
equation of the vortex motion, correct to the second order in the ratio of the core 
radius to that of curvature, by a matching procedure, which recovers the results 
obtained by Moore & Saffman (1972). An asymptotic formula for the linear 
dispersion relation is obtained up to the second order. Under the assumption of 
localized induction, the equation governing the self-induced motion of the vortex is 
reduced to a nonlinear evolution equation generalizing the localized induction 
equation. This new equation is equivalent to the Hirota equation which is integrable, 
including both the nonlinear Schrodinger equation and the modified KdV equation 
in certain limits. Therefore the new equation is also integrable and the soliton surface 
approach gives the N-soliton solution, which is identical to that of the localized 
induction equation if the pertinent dispersion relation is used. Among other exact 
solutions are a circular helix and a plane curve of Euler’s elastica. This local model 
predicts that, owing to the existence of the axial flow, a certain class of helicoidal 
vortices become neutrally stable to any small perturbations. The non-local influence 
of the entire perturbed filament on the linear stability of a helicoidal vortex is 
explored with the help of the cutoff method valid to the second order, which extends 
the first-order scheme developed by Widnall (1972). The axial velocity is found to 
discriminate between right- and left-handed helices and the long-wave instability 
mode is found to disappear in a certain parameter range when the successive turns 
of the helix are not too close together. Comparison of the cutoff model with the local 
model reveals that the non-local induction and the core structure are crucial in 
making quantitative predictions. 

1. Introduction 
t ”-:,. 1-1 tubes, rings and sheets are fundamental elements underlying the dynamics 

‘1 high-Reynolds-number flows. Since they retain their identities for a long time, a 
knowledge of the time evolution of vortices is quite helpful in understanding the 
dynamical structure of real flows. 

Concentrated vortices are known to support various fascinating waves. Elongated 
vortices observed in nature are susceptible to vigorous twisting distortions. Recently 
Hopfinger, Browand & Gagne (1982), Maxworthy, Mory & Hopfinger (1983) and 

t Present address : Department of Applied Physics, Faculty of Engineering, Nagoya University, 
Chikusa-ku, Nagoya 464-01, Japan. 
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Maxworthy, Hopfinger & Redekopp (1985) have done elaborate experimental studies 
of wave motions on vortex cores and revealed the detailed properties of non- 
axisymmetric and axisymmetric waves. 

The maximum radial excursion of the core centreline of the vortices generated by 
Maxworthy et al. (1983, 1985) is comparable with the core radius. In these cases, 
Leibovich, Brown & Pate1 (1986, LBP) succeeded in calculating a dispersion relation 
for bending waves that well approximates the experimental data. They analysed the 
Howard-Gupta equation (Howard & Gupta 1962) both analytically and numerically 
for small-amplitude waves on a straight columnar vortex, allowing for axial velocity 
in the core, and they made headway with respect to a weakly nonlinear theory 
following Leibovich & Ma (1983). Bending distortions of a vortex filament with large 
core displacement are also common in nature and are beyond the scope of the weakly 
nonlinear analysis. Our major concern is the mathematical description of long 
bending waves on an isolated vortex core whose displacement is not necessarily small 
compared with the core radius. The fluid is assumed to be inviscid and incompressible. 

The strong nonlinearity of the Euler equation has made the full solution for vortex 
motion inaccessible, so some mathematical idealizations have been unavoidable. The 
simplest approach is the so-called ‘ localized induction approximation ’ put forward 
by Arms and Hama (Hama, 1962, 1963, Arms & Hama 1965). They assume that the 
core radius of the vortex tube is so small that the induced velocity at a point on the 
filament is dominated by the contribution from the neighbouring segment. The 
resulting equation of motion is referred to as the ‘localized induction equation (LIE) 
and is written as 

where X = X(s, t)  denotes a point on the filament as a function of the arclength s and 
the time t ,  K is the curvature of the filament curve, b the unit binormal vector, r the 
circulation of the vortex and a the core radius. The remaining parameter L is the 
length of the segment whose contribution to the induction velocity is taken account 
of in (1.1). Note that L is indeterminate within the framework of this approximation. 
Further, neglecting the variation of L l a  along the filament and rescaling the time 
variable, we have 

(1.2) 

where the subscripts indicate the partial differentiation with respect to the indicated 
variables. Betchov (1965) transformed (1.2) into a coupled system of intrinsic 
equations for the curvature and torsion with the aid of the SerretFrenet formulae 
of space curves. Later, Hasimoto (1972) showed that the LIE is equivalent to the 
nonlinear Schrodinger equation 

x, = x, x xgg> 

i ~ t  + ~ 8 8  + t I~IV = 0, (1.3) 

by introducing a complex function 

This implies that the LIE is completely integrable and admits soliton excitations. In 
fact, Hasimoto gave an analytical expression for the l-soliton solution by 
reconstructing the space curve from its curvature and torsion corresponding to the 
1 -soliton solution of nonlinear Schrodinger equation (1.3). This reconstruction 
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problem, however, is not easy because a highly complex Ricatti equation with the 
coefficients obtained from knowledge of the curvature and torsion must be solved. 
Kida (1981) circumvented this obstacle to obtain all the steady shapes of a vortex 
filament, including a helicoidal filament (Betchov 1965) , Euler’s elastica (Hasimoto 
1971) and the Hasimoto soliton etc., which were essentially described by Kirchhoff s 
elasastica (Kirchhoff 1859; Hasimoto & Kambe 1985). 

Soliton interaction has been studied numerically by Aref & Flinchem (1984) for the 
collisions of two solitons. Sym (1982, 1984) was the first to develop an analytical 
approach to solve the inverse problem, which is called the ‘soliton surface approach ’. 
According to this approach, solutions of the LIE are expressed in terms of the wave 
functions of the AKNS equations associated with the nonlinear Schrodinger equation. 
This geometric approach is then combined with the Darboux transformation to yield 
the Biicklund transformation of LIE. Using this, Levi, Sym & Wojciechowski (1983) 
succeeded in calculating two soliton interactions analytically. Fukomoto & Miyazaki 
(1986, 1988) adopted the bilinear formalism (Hirota 1982) to obtain the N-soliton 
solution explicitly. However, a serious problem has arisen in the comparison between 
the analytical solution and the experimental observations : unfortunately, this 
solution does not exhibit the clear phase advance during a head-on collision between 
two solitons shown in the observations by Maxworthy et al. (1983, 1985). This 
discrepancy may be attributed to the several dynamical aspects ignored by the 
localized induction approximation. For example, Maxworthy et al. (1985) pointed 
out that the cut-off parameter Lla is not a constant but a strong function of the 
wavenumber or the local curvature. 

The stability of helical waves is also of fundamental interest. The study of a 
helicoidal filament has a long history and all of the existing theoretical studies 
conclude that it is unstable to infinitesimal perturbations (Levy & Forsdyke 1928; 
Betchov 1965; Widnall 1972 : Kida 1981, 1982). However, Maxworthy et al. (1985) 
reported that helical waves are observed to exist stably for some time. Although the 
observed wave amplitude is not large, this result leads us to the expectation that 
there might be stable helical waves of finite amplitude if some mechanisms were 
incorporated into the stability analysis. 

These considerations inspired us to explore the hidden dynamical effects. A salient 
feature of the formation of concentrated vortices is the inclusion of strong axial flow 
in vortex cores, different from the surrounding flow. Tornadoes, bath-plug vortices 
and trailing vortices behind the wing of an aircraft are the typical examples. The 
magnitude of the axial velocity near the core axis was substantial in the laboratory 
experiments by Maxworthy et al. (1983,1985). The principle aim of the present paper 
is to shed light on the effect of axial flow upon the large-amplitude long bending 
waves of a slender vortex tube. 

If we assume that the core radius is very small in comparison with the local radius 
of curvature, we can use the method of matched asymptotic expansions to determine 
the self-induced velocity of the vortex. Widnall, Bliss & Zalay (1971) calculated the 
velocity up to O(I‘/R),  permitting arbitrary axisymmetric distributions of the swirl 
and axial velocities. Here R is a measure of the radius of curvature. This result was 
generalized by Callegari & Ting (1978) to include the viscous diffusion of the vorticity 
with a particular initial distribution. Considering the force balance at the edge of the 
vortex core, Moore & Saffman (1972) derived the inviscid equation of motion correct 
to O(ra/R2), i.e. to second order. Their derivation is based on compact and elegant 
physical intuition and we think that it is worth deriving it in a more straightforward 
and systematic manner. 
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In $2 we present the derivation of the Moore-Saffman filament equation by 
making use of the method of matched asymptotic expansions up to the second order. 
The second-order correction to the linear dispersion relation for helical waves on a 
straight columnar vortex is deduced. 

In $3.1 we demonstrate that, under assumptions similar to those of the localized 
induction approximation, the Moore-Saffman equation can be simplified to a new 
integrable nonlinear evolution equation. The new equation is equivalent to the 
Hirota (1973) equation which includes both the nonlinear Schrodinger equation and 
the modified KdV equation. The N-soliton solution is obtainable through the soliton 
surface approach and Hirota’s bilinear method (Miyazaki & Fukumoto 1988), which 
is described in $3.2. Some other exact solutions including Euler’s elastica and a 
helicoidal filament are collected in $3.3. In  $3.4 we study the linear stability of a 
helicoidal filament on the basis of our new model equation. There, the stabilizing or 
destabilizing effect of the axial velocity upon the long-wave disturbances on a 
helicoidal filament is clarified. A novel feature is the existence of a class of stable 
helicoidal filaments. 

There are, however, some problematical steps in the passage from the full 
Moore-Saffman equation to its local-induction version. This ambiguity motivates us 
to  investigate the influence of the entire perturbed filament on the stability of a 
helicoidal filament. One reliable and feasible approach to this is the ‘cutoff’ method 
proposed by Crow (1970) and refined by Widnall et al. (1971) and Moore & Saffman 
(1972). Widnall (1972) applied this method to  study the stability of a helicoidal 
vortex filament, which is valid to the first order. I n  $4, we study the same problem 
by extending Widnall’s procedure to the second order on the basis of the 
Moore-Saffman equation. The results of the local model in $3.4 are then assessed and 
the axial-flow effect on the long-wave and other modes of a helicoid is elucidated over 
a wide range of the geometric parameters. 

The last section ( $ 5 )  is devoted to a summary and conclusions. 

2. The self-induced motion of a thin vortex filament 
In this section we shall derive a closed system of equations for the self-induced 

velocity of a thin vortex filament with axial flow in the core, up to the second order 
with respect to the curvaturk effect. We begin with the evaluation of the Biot-Savart 
integral. 

2.1. Biot-Savart formula 
Let us recall the kinematical result for an incompressible fluid that, once the 
solenoidal distribution of vorticity is specified at  all points of the fluid together with 
the boundary conditions on the velocity, the velocity of the fluid is determined 
uniquely over the entire fluid region. Without any boundary, the fluid velocity v ( x )  
a t  a point x is connected to the vorticity distribution w ( x )  by the Biot-Savart law : 

1 
V ( X )  = -- d3x’w(x’) x V- 

4n ‘I Ix - x’I 

An axial-velocity distribution inside the vortex core gives rise to the transverse as 
well as the axial vorticity component. We assume that both the axial and transverse 
components of vorticity are confined to a thin core region and that the core radius 
a is much smaller than the local radius of curvature of the vortex filament R. In the 
following, we calculate the induction velocity near the vortex core due to these two 
components of vorticity separately. 
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To this end, we introduce an orthonormal curvilinear coordinate system attached 
to each point X(s,  t )  on the filament, which is the same as that employed by Widnall 
et al. (1971). Moore & Saffman (1972) and Callegari & Ting (1978). For any point x 
close to the vortex core the corresponding nearest point X(5,t)  on the filament can 
be chosen, uniquely. We define local cylindrical coordinates ( r ,  8,  e )  centred on X(5, 

t )  in the following way. The position on the plane containing the normal vector n and 
the binormal vector b at X(s,  t )  is specified by the r- and 0-coordinates. Let us take 
the angle Q, so that n makes angle Q, (and b makes x/2 -Q,) with the unit vector e, in 
the radial direction. Then we can get a set of orthogonal coordinates if the angle 0 

(2.2) 
is defined by 

8 = Q , - @ O ( ~ ,  t ) ,  

where 880 - - - -7.  
a8 

In this coordinate system the position vector x is given by 

We can check that this toroidal system is indeed orthogonal, namely 

x = X(e, t )  +re,. (2.4) 

dx = e,dr+reedO+htds, (2.5) 
where h = 1-KrCOSQ,, (2.6) 
and e, denotes the unit azimuthal vector. In order for the local system to be well 
defined, the region described by each local system about a point on the vorticity 
centroid has to be limited to the distance O(R) from that point. 

First we write down the known results for the induced velocity caused by the axial 
vorticity and denote it by u,. Under the condition that the vortex is very thin, the 
volume integral in (2.1) may be replaced by a line integral, 

(2.7) 

where X(s‘, t’) denotes the position vector of a point on the filament curve. When we 
calculate the velocity near the vortex core, the contribution of the local portion 
dominates the Biot-Savart integral (2.7). The Taylor expansion of X in the 
arclength s’ around the point X(s,  t )  nearest to the given fluid position x is, to cubic 
order, 

X ( B ’ , t )  = X ( s , t ) + t ( s ’ - s ) + ~ K n ( s ’ - - 9 ) ’  

1 
3 !  

+- ( - K2t + K, n-k K7b) (S’ - 9)3 + o[(S’ - 8)*] .  (2.8) 

Inserting (2.8) into (2.7) and integrating along the filament over a distance L on 
either side of the point s, we obtain, in the limit a 4 r Q R, 

+icos2rpee+-Le 18 e} +Q+O (2’) - , (2.9) 

where Q is the remaining non-local contribution to the integral. (See Moore & 
Saffman 1972; Callegari & Ting 1978 for details.) 
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Next, we evaluate the contribution due to the transverse vorticity component 
wT(n) in (2.1). It is assumed that the vortex lines of the transverse vorticity 
constitute a set of closed contours C(n) in a given cross-sectional plane and that n is 
taken to be the orthogonal coordinate to those contours. In  this case (2.1) is reduced 
t,o 

(2.10) 

where 81’ is a length increment along the direction of a transverse vortex line on C(n).  
With the help of Stokes’ theorem, (2.10) becomes 

(2.11) 

where S(n) indicates the surface enclosed by the contour C(n)  and t‘ is the unit 
normal vector to that surface. We postulate that the velocity component in the 
normal direction parametrized by n is absent and that the other components of 
velocity depend only on n and t .  Then, the transverse vorticity is expressed by 

aw(o) 
W T  = --. an 

Substituting (2.13) into (2.12), we have, after partial integration, 

1 w y n ,  t )  t‘S(x - x‘) ds’ 

(2.13) 

The first term is simply the axial flow inside the core. The second term means that 
the distribution of the transverse vorticity is replaced by that of doublets. It is the 
second term that is directly related to the induction velocity outside the core. This 
result corresponds to the familiar fact that the flow field induced by a vortex ring is 
equivalent to that due to a system of doublets distributed with uniform density over 
the interior of the circle and that the transverse vorticity may be regarded as the sum 
of a series of vortex rings. If the axial velocity has significant values only within a 
thin core, which is the case we are concerned with, the second term on the right-hand 
side of (2.14) is reduced to 

(2.15) 

in the irrotational region outside the vortex core. The integration of (2.15) can be 
performed along the entire arrlength s’ as follows: 

= 0. (2.16) 



Three-dimensional distortions of a vortex $lament 375 

Thus, the distribution of doublets along the filament makes no contribution to the 
induced velocity, which is equivalent to the statement that the magnetic field of a 
long thin coil is confined to the core. The contribution to the BioeSavart integral is 
due, solely, to the axial-vorticity distribution, whose evaluation has been completed 
by (2.9) However, it  turns out that the extrapolation of (2.9) to the surface of the 
vortex tube is insufficient to evaluate the velocity of the vortex filament. We need 
a detailed knowledge of the flow field in the vicinity of the vortex core, where the 
coupling between the axial and azimuthal vorticity components plays an essential 
role. Equation (2.9) provides us only with the limiting form of the outer flow field 
applicable to the region closer to the core, but not in the immediate neighbourhood. 

In the remainder of this section, we inquire into the solution of the Euler equation 
valid within and near the vortex core by using a perturbation technique up to the 
second order in the ratio of the core radius to that of curvature. Thereafter the 
resulting near field is matched to the outer flow given by (2.9) to yield the velocity 
of the vortex filament. 

2.2. The inner and outer expansions 
Widnall et al. (1971) and Callegari & Ting (1978) have already given the first-order 
correction term using a matching method. The latter generalizes the former to take 
account of viscous decay of the vortex core. We make an attempt at a straightforward 
extension of the matching technique to the second order, though we confine ourselves 
to the inviscid core dynamics. First, we adapt their expansion scheme for our 
purpose. 

Suppose that the space curve X(s , t )  is the centroid of the axial-vorticity 
distribution in each core cross-section. In addition we require that the curve Xmoves 
as a material line so that it is always composed of the same fluid particles. Here we 
introduce a marker variable 6 along the curve satisfying the condition 

k*t = Q * t  = QII, (2.17) 

and occasionally use it in place of s when convenient. Here k is the velocity of a 
point on the curve specified by 6 :  

ax 8 = - (6, t ) .  
at 

Then the above conditions read 

k - n  = v - n ,  X - b  = v - b  at r = 0, 

(2.18) 

(2.19) 

where v is the total velocity of the fluid in a rest frame. 
In order to perform the matched asymptotic expansions, it is convenient to rewrite 

the equations of motion in dimensionless form. We have two typical lengthscales : 
one a measure of the core radius a, and the other that of the radius of curvature R, 
of the curve X(e, t ) ,  and their ratio is denoted by e :  

(2.20) 

Generally, owing to the vortex-line stretching, the core radius a depends on both t 
and s. The typical choice of a, is the core radius of the initial unperturbed vortex, 
which is assumed to be uniform along the arclength. We shall seek the solution as 
expansions in powers of e under the requirement 

sg 1. (2.21) 
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Let us assume that the lengthscale of significant variation along the vprtex filament 
is O(R,) and normalize the arclength, X' and the local radius of curvature by R,: 

s = s'/Ro, E = C/R,, X = X'/R,, R = R'/R,. (2.22) 

Here as a tentative notation we distinguish each dimensional quantity by attaching 
a prime to  the corresponding dimensionless variable. For the outer expansions valid 
at large distances from the vortex tube, the appropriate normalization of the radial 
coordinate is 

r" = r'/Ro. (2.23) 

The inner expansions are valid in the neighbourhood of the core and the dimensionless 
inner radial variable is defined as 

r = r'/ao = ?/e .  (2.24) 

We anticipate that the vortex evolves mainly according to the LIE (1.1). In  such a 
case the time variable is non-dimensionalized as 

which implies that  we focus our attention on rather slow 
velocity and the pressure p are non-dimensionalized using 
velocity : 

(2.25) 

bending modes. The 
the maximum swirl 

(2.26) 

Here po is the density of the fluid. 
The outer solution is constructed by evaluating the Biot-Savart integral with the 

vortex tube regarded as a space curve. The asymptotic behaviour of the solution in 
the intermediate region (the overlap domain) is provided by (2.9). Equation (2.9), in 
turn, plays the part of the matching condition, i.e. the boundary condition imposed 
on the inner solution a t  infinity. 

In  order to obtain the inner solution, it is advantageous to work in the moving 
cylindrical coordinates ( r ,  8, s), already mentioned. Let V = (u, w, w) denote the 
velocity in this coordinate system. Then the fluid velocity as seen in a fixed 
coordinate system is written in terms of the dimensionless variables as 

V ( Y ,  8, S, t )  = EX+ V(r, 8, S ,  t ) .  (2.27) 

The full equations of motion in the moving system are contained in the Appendix. 
Suppose that the form of the curve X ( s , t )  is specified over the entire range of the 
length parameter a t  some instant. We search for the solution in the form of series 
expansions in E .  We observe that the term proportional to  In B inevitably appears, in 
view of the nature of the Biot-Savart integral. We take into account this dependence 
implicitly as that of the coefficients in the e-expansions. 

Thus we proceed by postulating the following forms of inner expansions for the 
velocity and the pressure : 

u = E d l ) ( r ,  8, S, t )  + e 2 d 2 ) ( ~ ,  8, s , t )  + ..., (2.28) 

ZI = d0) ( r ,  t )  + ew(l)(r, 8, S, t )  + e2d2) ( r ,  8, s, t )  + . . . , (2.29) 

w =w(o)(r,t)+~w(1)(r,B,s,t)+s2~(2)(r,e,~,t)+ ..., (2.30) 

p = p(0) ( r , t)+€p(1'(r,8,s,t)+s2p(2)(r,e,s,t)+ ..., (2.31) 
8 = & O ' ( E ,  t )  + E m (  6, t )  + . . . . (2.32) 
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The leading-order velocity corresponding to the unperturbed straight vortex has 
swirl and axial components only. We require that these components do not depend 
on 8 and s. The time dependence follows from the vortex-line stretching which is 
uniform with respect to s. The non-uniform stretching is shown to have no influence 
on the lcading-order velocity. Then we can easily confirm that the Euler equations 
for the leading terms are satisfied. 

According to  (2.19), the boundary conditions a t  the centroid X of the vortex are 

u=w=O at  r = 0 .  (2.33) 

The remaining conditions are the requirement that the outer and inner solutions be 
matched to  each other. We assume that the velocity is smoothly continuous across 
the core boundary, following Callegari & Ting. I n  this case, if the velocity in the inner 
regime is connected continuously with that in the outer regime, then the continuity 
of the pressure is automatically insured. Rewriting (2.9) in terms of the dimensionless 
(inner) variables, the matching condition as r +  00 reads 

(2.34) 
1 
r 

do) - -+o(r-n), do) - o ( T - ~ )  for n = 2, 

(2.35 a )  

(2.35 b )  

( 2 . 3 6 ~ )  

(2.36 b )  

where L" = L/R,.  

determination of the velocity of the vortex. 
The solution for the axial velocity will prove to be unnecessary for the final 

2.3. The inner solution and the velocity of a wortexf2ament 

Before calculating the second-order perturbations, we present a brief review of the 
first-order perturbations in the inner region. At first order the equations of motion 
take the following forms (see the Appendix) : 

(2.39) 

where use has been made of the assumption that the leading-order velocity is 
axisymmetric and uniform along the vortex filament. The equation of continuity is 

wf) + [ru(')], + ~ r v ( O )  sing, = 0. (2.40) 
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Equation (2.40) is satisfied by introducing a stream function related to the cross- 
sectional velocity by 

Eliminating the pressure p ( l )  from (2.37) and (2.38) and making use of (2.41), we have 

(2.42) 

is the axial-vorticity component and V2 is the two-dimensional Laplacian : 

(2.44) 

The boundary conditions (2.33) are, a t  the present order, 

By inspection, we readily find that the appropriate form of the solution is 

= &,1)(r, s, t )  + &l) ( r ,  s ,  t )  cosq. (2.46) 

Substitution of (2.46) into (2.42) yields 

where 

(2.47) 

(2.48) 

Notice that no equation governing $hl) is available. This axisymmetric part of the 
stream funchion gives the axisymmetric part of the first-order swirl velocity. We 
suppress this term by postulating the following expansion form for the dimensional 
core radius a :  

a(s ,  t )  = a( t )  +c2a(2)(S, t ) .  (2.49) 

This is really a hypothesis, because the construction of &,l) requires the solution of 
the third-order perturbations. Moore & Saffman (1972) gave a physical argument for 
it based on fast core-area waves of velocity of O(I'/a),  which would quickly smooth 
out any non-uniformity in the core radius. Recently Lundgren & Ashurst (1989) 
proposed a model equation incorporating the fast area-varying waves on a vortex 
core and developed a nonlinear theory of helical as well as axisymmetric waves. This 
hypothesis, together with the conservation of circulation associated with the axial 
vorticity, leads us to the conclusion that the corrections to  the axisymmetric part 
appear a t  higher orders. One of the homogeneous solutions of (2.47) is found to be do). 
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We can then build the general solution of (2.47) subject to the boundary condition 
(2.45) a t  r = 0 as follows: 

Now we arc in a position to match the inner field to the outer one. The matching 
condition (2.35), when expressed in terms of the stream function, is 

+(l) - - $ K ~ C O S T  In - - 1  +r(Q(l)-aO)).(nsinq,-bcosrp) as r + w .  

(2.51) 

The asymptotic behaviour of (2.50) a t  large values of r is found by returning to 
(2.47), together with (2.34), as 

[ (3 1 

$(I) - gKrlnr+rA+O - , (2.52) 

where A = A(s,  t )  is a function obtainable" from (2.50). Remembering the definition 
(2.46) supplemented by the condition $A1) = 0, we conclude that the matching 
condition is achieved by requiring that 

(3 

Comparison of (2.50) 

A = K lim 

= { $K [ In ($)- I] + A  (s, t ) }  b + Q(l). 

with (2.52) produces 

(2.53) 

r + m L  ' - 

This expression is simplified by virtue of L'Hopital's rule to become 

(2.55) 

The form for the first-order velocity just given is equal to that derived by Widnall 
et al. (1971), Moore & Saffman (1972) and Callegari & Ting (1978). 

For later use, we need the &dependence of the first-order velocities. Introducing 
(2.46) into (2.41), we get 

(2.56) 

(2.57) 

dl) = &(l)(r,  s, t )  sinv, 

V(1) = P ( r ,  s, t )  COST. 

The axial component of velocity is then found from (2.39) to be 

w(l) = t i c ) ( r ,  s, t )  + ti(l)(r, s, t )  COST, (2.58) 

with (2.29) 

Equation (2.56) is a result irrelevant to the neglect of the axisymmetric part of the 
stream function. It tells us that there is no net local radial convergence or divergence 
of flow that depends on the arclength s, which in turn implies that the non-uniform 
local stretching of the vortex line does not appear at this order. This may serve as 
some support to the hypothesis (2.49). The specification of the axisymmetric part ti;') 
of the axial velocity is given a t  the end of the derivation. 

13 FLH 222 
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Now we proceed to  the calculation of the second-order perturbations. The second- 
order fields ( u ( ~ ) ,  d2) ,  d2))  can be shown to satisfy the following forms of the Euler 
equation (see the Appendix) : 

v(0)ui2) + p (1) -2v'0'w'2' - 1w'1']2 
2W'O' U ,  - - e, + u(')u?) + 

U r 

+ W(o)Uil)  +2KWc0'Wc1) COSp,+K2r[W(0)]2 COS2p, = -pi"', (2.60) 

1 
+w(')wh')- ~ K W ( ~ ) W ( ' )  s i n g , - ~ ~ r [ w ( ~ ) ] ~  coscpsinp, = - - p i 2 ) ,  (2.61) 

r 

- KW(')&) cosp,+ K " l & d 0 )  +w(0)dl)] sing, + K2rzd0)do)  sing, cosg, = -&), (2.62) 

where u represents the rate of local stretching : 

(2.63) 

The equation of continuity is, to this order 

-~r[w(1)cosP)],-Kcosp,[r2u(1)], = 0. (2.64) 

Recalling the behaviour of the first-order velocities (2.56)-(2.59), we observe from 
(2.60)-(2.64) that the second-order velocities d2) and d2)  are divided into three parts; 
the axisymmetric part, the part proportional to cosp, or sing, and that proportional 
to cos Q or sin Q. The axisymmetric part has an influence on the evolution of the 
leading-order velocity profiles, through which the velocity of the vortex filament is 
indirectly affected. The third part is related to the fluid motion caused by the core 
deformation of elliptical shape and has nothing to do with the translational velocity 
of the vortex at this order. Since our primary interest is in the translational velocity, 
we deal exclusively with the velocity proportional to COST or sing,. 

Retaining only the relevant terms, (2.60), (2.61) and (2.64) become simply 

(2.65) 

and [ r ~ ( ~ ) ] ,  + vj? + rwp) = 0. (2.67) 

In  passing, we note that the terms in (2.65)-(2.67) correspond to those considered by 
Moore & Saffman (1972). The third terms on the left-hand sides of (2.65) and (2.66) 
come from the convection of the axial momentum along the tube axis and the 
apparent acceleration due to transfer of the coordinates to the moving frame. The 
fourth and fifth terms originate from the convection of the transverse and axial 
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momentum along the tube, respectively. Equation (2.67) means that the apparent 
distributions of sinks or sources appear in each two-dimensional cross-section of the 
tube on account of the variation of the axial mass flux along the tube. 

Inserting (2.58) with (2.59) into (2.67), we find that the left-hand side of (2.67) 
vanishes by introducing a second-order stream function : 

1 
r 

u(2 )  = - @o (2) 9 

d2)  = - @ i 2 ) - r 2 w ( o ) ( K ~ s i n ~ - K ~ c o s ~ ) - ~  (Zir) sing,-~z?l) COST). 

(2.68) 

r2w(o) 
(2.69) 

We assume the following solution form for yV2) : 

@(2) = $12) COST+ $12) COST. (2.70) 

Then (2.65) and (2.66) are cast into the following forms: 

(2.72) 

where the definition of fi is given by (2.48). The boundary conditions at the axis 
become 

(2.73) 

Equations (2.71) and (2.72) subject to the conditions (2.73) produce a solution in the 
form : 

13-2 
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Repeating the same matching procedure as for the first-order perturbations, we 
obtain 

J?’) = B,(s,t)b-B2(s,t)n+Q(2), (2.76) 

(2.78) 

Bringing together the first-order velocity given by (2.53) and (2.55) and its second- 
order correction (2.76)-(2.78), we arrive at the final formula for the velocity of the 
vortex filament correct to the second order, which is written in terms of the 
dimensional variables as : 

(2.79) 

It was shown by Callegari & Ting (1978) that the axisymmetric parts of (2.61) and 
(2.62) determine the evolution of the leading-order velocities to be 

w(O)(r, t )  = w(O’(a, 0) Z(O) /E( t ) ,  (2.80) 

p y r ,  t )  = [(O)(a, 0) Z(t) /Z(O) : (2.81) 

thus d o ) ( ? - ,  t )  = w(O)(a, 0) (Z( t ) /Z (O) )$ ,  (2.82) 

where a = r[Z(t)/Z(O)]f and l ( t )  is the total length of the filament. 
It remains to specify the behaviour of the first-order correction &hl) to the 

axisymmetric part of the axial velocity. The conservation of mass in the tube 
averaged over the core cross-section requires 

where m is the axial velocity averaged over the core cross-section: 

w - = I J ~ ~ J ~ r w ( r , e , s , t ) d r d e ,  
xu2 

Introducing the axisymmetric part of w given by 

w = w(O)(r, t )  +s&$”(r, s, t ) ,  

and (2.49) into (2.83), we find that 
- - 

1 aa2 a ad;) 2e2w(0) aacz)  
+-lnu+e-+-- - - 0, -- 

a2 at at as a as 

(2.83) 

(2.84) 

(2.85) 

(2.86) 
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where the definition of u is given by (2.63). It is easy to show that the local rate of 
stretching u changes according to 

(2.87) 

The conservation of volume imposes a constraint on the evolution of the uniform 
part a(t)  of the core radius: 

a(t)ll(t) = constant. (2.88) 

With these forms, (2.86) becomes 

The dependence of the total arclength 1 and t is determined by 

-= f - ( lnu )ds=-  dl dt at a f ~ n - k d s .  

(2.89) 

(2.90) 

To fix the constant that arises as the result of integration of (2.89), we invoke the 
conservation of the longitudinal circulation, i.e. the circulation along the vorticity 
centroid. With (2.58) supplemented by (2.59), we see that the longitudinal circulation 
is given by 

f , c O ,  5, t )  ds = d o ) ( O ,  t )  l ( t )  +ef..?c)(O, 5, t )  ds. (2.91) 

If we assume that initially Zirhl)(O,s,O) = 0, then the conservation of the circulation 

(2.92) 
enforces the condition 

Zirt'(0, 5, t )  ds = 0, f 
where use has been made of (2.80). 

We notice that the resulting equation coincides with that of Moore & Saffman 
(1972). They took advantage of the approach based on the balance of forces acting 
on the surface of the vortex tube. The only difference lies in that they replace the 
filament curve by the osculating circle to the vortex at  each point to evaluate the 
outer velocity field through the Biot-Savart integral. On the other hand, we 
approximated the filament curve by cubic polynomials in 8 .  

In this stage, we can illustrate analytically how the axial flow affects the dispersion 
relation for long waves on columnar vortices, which extends the first-order form 
provided by Widnall et al. (1971), Moore & Saffman (1972) and Leibovich et al. (1986) 
to the second order. Consider a columnar vortex with arbitrary, but axisymmetric, 
distributions of axial and azimuthal vorticity. We introduce different cylindrical 
coordinates (p,$,z) fixed in a rest frame such that the z-axis coincides with the 
centroid of vorticity. The appropriate choice of the basic velocity profile (0, V,, W,) 
is Burgers' vortex expressed by 

(2.93) 

(2.94) 
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The parameter values W,/Vm = 0.4, a1 = 0.54, a2 = 1.28 and r/(2xaVm) = 1.37, 
where V, is the maximum swirl velocity, fit the experimental data of Maxworthy 
et al. (1985). Alternatively, we can adopt Rankine’s vortex, which is considered to be 
a discontinuous limit of the profiles (2.93) and (2.94). 

Suppose that the properly defined core boundary is slightly perturbed like 

p = a+Dcos (kz+m$-wt ) ,  (2.95) 

where m = f 1 for bending waves, making the assumption that 

D + a ,  Ik la4  1. (2.96) 

Then it immediately follows that the centroid X’ of the vorticity is deflected off the 
z-axis to become 

A” = [ D  cos (kz-  w t ) ,  -mD sin (kz-  wt), z ] .  (2.97) 

With this form, the integration of the Biot-Savart formula (2.7) can be performed 
over the entire length in the form of expansions in powers of D / p ,  giving, to first 
order, 

(2.98) 
r 

- 2xp 
u --eeg+V@, 

where eeg is the unit azimuthal vector and 

mlkl@D 
2x 

@=- K,( Ikl p) sin ( k z  + m$ - wt) ,  (2.99) 

with K ,  the second-kind modified Bessel function of first order. The curvature K~ and 
70 of the curve (2.97) are 

K~ = Dk2, ro = -mk.  (2.100) 

We have two candidates for the unit of the outer variable due to  the existence of two 
parameters given by (2.100). Since (2.96) implies that Dlkl 4 1, the preferred 
lengthscale characterizing the outer region is l / lkl .  Then (2.98) and (2.99), when 
rewritten in terms of the local comoving cylindrical coordinates ( r ,  8, s), tends in the 
inner limit a 4 r 4 l/lkl to  

0, = -e,+- rDk2 [In (k) - y - i] b 
2xr 4x 

[y  + In (+I klr) - 3 cos pt + O[TDk2( k ~ ) ~ ] ,  (2.10 1) 
mrD(k13r 

cos pe, - 
TDk2 +- 

4x 4n 

where y is Euler’s constant. Note that this limit is not inconsistent with the limit 
a 4 r 4 1 / ~  of our previous analysis. Equation (2.101) imposes the following 
boundary conditions for r % a on the inner solution: 

(2.102) 

(2.103) 
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FIGURE 1 .  Asymptotic values of the dispersion relation form = - 1 ,  for Burgers’ vortex (2.93) and 
(2.94) with the parameters values given by Maxworthy et a2. (1985). The solid line is the second- 
order formula (2.109). The dashed line is the first-order one. 

The inner solution has already been provided by (2.41) with (2.50), and (2.68) and 
(2.69) with (2.70), (2.74) and (2.75). Thus the inner and outer solutions match if we 
take 

C ,  = In - - y+  lim - r[~‘~’]”dr-ln - r [ ~ ‘ ” ’ ] ~  dr. (2.106) 
( a ~ d  r + m  l r 2  Jo LA -7 J 0 

The vortex-line stretching is absent for this small-amplitude wave motion since 
$O)-n = 0. Comparison of (2.105) with the relation 

X=-mwDb (2.107) 

gives rise to the dispersion relation valid to the second order. 

This is an extension of the first-order formula. The same expression is given by Moore 
& Saffman (1972) for a helix of large pitch, permitting large lateral excursion. 
Fortunately, thanks to  the restriction (2.96), our derivation is free from the 
ambiguity arising from the evaluation of the non-local induction. 
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t - 
- 0.4 -0.2 

ka 
FIQIJRE 2. Asymptotic values of frequency, phase velocity C, and group velocity C,, valid to 

the second order, for the case of figure 1.  

If the profile (2.93) and (2.94) is introduced, (2.108) takes the form 

1 w = - E [ l n ( L ) - + y + t l n ( & , i -  27c2W, a2 
47c alkl r2al 

+ !jW, a2k3 { & [ In (L) -h +t In (&a2) - 
alkl 

With the choice of the parameter values given by Maxworthy et al. (1985) and 
m = - 1 ,  we have plotted in figure 1 the normalized frequency as a function of the 
normalized wavenumber ka. For comparison, the values of the first-order formula are 
included. The departure from the first-order formula seems to agree, in the range of 
small wavenumbers, with that of the full numerical integration of the Howard-Gupta 
equation carried out by Leibovich et al. (1986), which is valid for all wavenumbers. 
Figure 2 shows the normalized frequency, phase and group velocities for the same 
case. 

In  order to  advance the solution of (2.79) in time, we cannot help appealing to 
numerical computation. However, we expect that a simplified version may well 
capture some essential behaviour of the time evolution of a vortex filament. In the 
following section, we shall make an attempt to  solve (2.79) directly. 
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3. Localized induction approximation 
3.1. Integrability 

In the previous section we have derived the Moore-Saffman equation (2.79) by a 
matching procedure. In order to make the axial-flow effect clearer, we simplify this 
equation by neglecting both the non-local induction Q and the variation of the cutoff 
parameter Lla along the vortex filament, as in the localized induction ap- 
proximation. Under these assumptions we can replace @')/a in the second term of 
the right-hand side by the s-derivative of the first term. Then we find that the second 
and third terms have the same form proportional to t x (Kb),. If we use the arclength 
s instead of the marker variable E and renormalize the time, we have 

X, = ~ b + W ( i ~ ~ t + ~ , n + ~ 7 b )  = X,xX,,+~[X,,,+~X,, x (X,xX,,)], (3.1) 

f Iom rZv(O)w(O) dr 
- 47c a, 

W =  - rw(O)dr+ 
r [In (3 - i] + lim [ fs do)' dr - r In (b)] - Iom rw(O)* dr * 
471 a r + m  0 47c 

r I. 
(3.2) 

This new equation is a natural generalization of the LIE, which takes account of the 
axial-flow effect up to the second order. The parameter W represents the magnitude 
of the second-order effect. 

Fortunately, this generalization preserves the most important property of the 
LIE, i.e. integrability. It is easy to see that the new equation (3.1) is reduced to the 
Hirota equation, by repeating Hasirnoto's (1972) procedure which proved the 
equivalence between LIE and NLS (see also Lamb 1977). If we introduce a complex 
vector N in addition to the complex function $ (1 .4) ,  

$ = ~ e x p ( i r 7 d d ) ,  N =  (n+ib)exp i 7ds' , ( r  1 
the Serret-Frenet formulae 

are rewritten as 
t, = Kn, n, = - ~ t + ~ b ,  b, = -731 

t, = i($*N+ $N*), 
N, = -$t. 

(3.3) 

(3.4) 

( 3 . 5 ~ )  

(3.5b) 

The time evolution of the tangent vector t is given by differentiating (3.1) with 
respect to s: 

t, = - ~ 7 n + ~ [ ( ~ , , + ~ ~ ~ - K 7 ~ ) n + ( 2 ~ , 7 + ~ 7 , )  b]= - ~ * N - & N * ,  (3.6) 

y = -i$'8-W$g8-~FQh~2$. (3.7) 

Nt = iRN+yt, (3.8) 

On the other hand, the time derivative of N can be expressed by 

where the identities N-N = 0, N-N*  = 2 and N - t  = 0 are considered. The real 
function R is determined from the compatibility of differentiations with respect to 
the time and the arclength: 

which leads to 
Nt, = N,,, 

R, = % J @ *  -y*$), 

(3.9) 

(3.10) 

+,+ y,-iR$ = 0. (3.11) 
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Integration of (3.10), using (3.7), gives 
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R = $+b12+&iW($$z-$s$*). (3.12) 

Then we have the Hirota (1973) equation after substituting (3.7) and (3.12) into 
(3.11): 

i$t + II.ss+tI$12$-iw($s,,+~I$1211.5) = 0. (3.13) 

The Hirota equation is the integrable equation that reduces to the nonlinear 
Schrodinger equation in the limit W + O  and to the modified KdV equation as W+ CO, 

respectively. So, our new equation is integrable. It is remarkable that the 
integrability of the nonlinear evolution equation obtained under the assumptions of 
localized induction is not lost, even if the higher-order correction terms are 
considered. It will also be noted that (3.1) includes the local stretching term 
proportional to ( K ~ ) ~  : 

whose integration from cl to c2, 

shows that there is no total stretch for a closed vortex filament and a vortex filament 
straight a t  infinity. 

Since the Hirota equation belongs to the class of integrable equations that are 
reduced to a system of linear equations by the AKNS formalism, we can apply the 
technique of the ‘soliton surface approach’ (Sym 1982, 1984) to (3.1) directly. This 
approach gives an illuminating geometrical interpretation of the above equivalence 
relation. Hirota’s method of bilinear form is also convenient for writing the N-soliton 
solution explicitly, and the bilinear form of (3.1) is presented by Miyazaki &, 
Pukomoto (1988). Anyway, the new equation (3.1) can be solved exactly and several 
solutions of physical interests are shown in the following sections. 

3.2. N-soliton solution 
According to the ‘soliton surface approach’ of Sym, the N-soliton solution can be 
generated by applying the Darboux-Backlund transformation to a ‘straight line 
vortex ’ X = - se,, @ = 0, successively. The Darboux-Backlund transformations 
(Levi, Ragnisco & Sym 1984) for the AKNS class of nonlinear integrable equations 
give the inter-relation between two solutions at  four levels, i.e. first a t  the level of the 
scattering data, secondly at  the level of the Jost solution, thirdly at the level of the 
potential $ and lastly a t  the level of the soliton surface (vortex filament) r (X) .  They 
add one more bound state to the scattering data and generate a solution with one 
more soliton (soliton excitation). Thus the N-soliton solution is obtained by purely 
algebraic means. The actual calculation parallels that of the N-soliton solution of the 
LIE (Levi et al. 1983; Sym 1984, 1985), and we have only to replace the dispersion 
relation for each bound state in the case of the LIE by 

(3.14) 

where Q is a discrete spectrum. The explicit form of the 1-soliton solution is given in 
Cartesian coordinates (2, y, z )  by 

X = Xe,  + Ye, + Ze, 
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with X+iY = - q1 sech (2q1{s - 4[p1 - w(q: - 3p:)] t} + cl) 
P: + q: 

x exp (i{2p1 s-4k;-q:  +2Wp1(p:-3q:)] t-q511), (3.15) 

(3.16) 

where 51 = Pl + iq, (3.17) 

and c1 and q51 are arbitrary constants. This expression is identical to that of the 
Hasimoto soliton except for the modified dispersion relation (3.14). 

This solution reminds us of two results concerning the experimental observations 
(Maxworthy et al. 1983, 1985). First, the soliton distortion shape is not affected at all 
by the existence of the axial flow inside the vortex core. Secondly, the envelope and 
phase velocities are modified as 

4p1 + 41% - W ( d  - 3 ~ 3 1 ,  (3.18a) 

(3.18b) 

Although we have not made quantitative comparisons, it may be noted that these 
results are consistent with the experimental results, a t  least qualitatively. The task of 
writing the N-soliton solution explicitly for N 2 2 is rather tedious (see Miyazaki & 
Fukumoto 1988 and Fukumoto & Miyazaki 1986 for the explicit N-soliton solution 
in the bilinear form), so we content ourselves with giving the 2-soliton solution, 
which is sufficient to grasp the features of soliton interaction. Its expression is 
identical to that of the LIE obtained by Levi et al. (1983) and Sym (1984), if the 
dispersion relation is replaced by (3.14) : 

2 2 

Pl Pl 
- (P; +- lp: -!I: + 2VPdP: - 3 m .  

+$1AI2 t anh~,s inh~, - i I Imd sinhq,] ei[l 

+[(1 + R e A ) c o s h ~ , + ~ 1 A 1 2 ~ e c h ~ l + i I m A  sinhql]eit2 

+a1AlZ sechqlei(Ql-pz)}, (3.19) 

2, = -s+%tanhq,+-- ImC2 {(ReA+~1d12)sinh~lcoshq, 
151l2 1 5 Z l 2  T 

+(1 +ReA+$~A~2)sinhqzcosh~,-$~A~2[sechqlsinhq,-tanhqlcos(~l-~,)] 
+ImAsin c,&-s,,>, (3.20) 

with 
T = coshr, coshq,+ (Red +&Il2) [cos (El-[,) + cosh (rl+q2)]. (3.21) 

Here ci (i = 1, 2) are the complex soliton parameters with positive imaginary parts 
and 

qi = 2(ImCi)~-21m[o(~t ) ] t+~P,  (3.22) 

Et = 2(Re5t)s-2Re[w(5t)lt+C, (3.23) 

with r?, &‘ being real constants. 

(3.24) 
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FIGURE 3. Perspective viewsofa head-on collision sequence between twosolitons (t& = _f0.5+0.25i) 
for three values of r: ( a )  w = 0;  ( b )  -0.1 ; (c) -0.5. Time increases upwards from -4  to 4. 

We show perspective views of the two-soliton interaction = _+0.5+0.25i) in 
figure 3(a-c).  for W = 0, -0.1 and -0.5, respectively. We can see from this figure 
that the phase shift during the collision of two solitons does not increase much even 
if the value of Im is increased. Thus, we cannot explain the large phase advance 
observed in the experiment (Maxworthy et al. 1983) simply by considering the axial- 
flow effect under the localized induction approximation. This failure suggests that 
some dynamical factors neglected in the derivation of (3.1), such as the variation of 
the cutoff parameter along the vortex filament and the non-local induction, may 
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play an essential role in the multi-soliton interaction. Our next problem will be to 
take them into account. 

Though our new approximate equation (3.1) does not always provide a good 
description of the quantitative findings of the laboratory experiments, it has the 
useful property of 'integrability ' and we can obtain, besides the N-soliton solution, 
several exact solutions which show qualitatively new behaviour of the vortex 
filament with axial flow. 

3.3. Other particular solutions 
It is possible to find solutions of (3.1) that represent vortex distortions travelling and 
rotating steadily without change of form. Kida (1981) worked out such solutions of 
the LIE. Following his analysis, we assume that the vortex filament translates along 
the z-axis with constant velocity V and rotates around the z-axis with constant 
angular velocity 8. Moreover, a steady slipping motion of the constant speed C is 
allowed : 

X, = -Ct+SZe, x X+ Vez. (3.25) 

This equation is integrated to give 

(3.26) 

(3.27) 

where we employ a fixed cylindrical coordinate system (p, 9, z )  and ep is a unit vector 
in the radial direction defined by 

ep = cos (#(() + a t )  e, +sin (# (c )  + at) e,. (3.28) 

we have, from (3.1) and (3.25) with (3.26), 

-Ct+8Pez X ep+ Ve, = K b +  W(;K2f+K,n+K'Tb), (3.29) 

which determines the functions p( [ ) ,  # ( E )  and z (5 )  along with the constants V ,  SZ and 
C. Successive differentiations of (3.26) with respect to s give 

t = p5eP+p#pz x ep+Z5e,, (3.30) 

Kn = (P55-P#; )ep+(2p5#5+P#55)eZ epfZg5eZ, (3.31) 

where the relation 
ep5 = #5ez x ep 

is used, repeatedly. We see from (3.30) that 

and from (3.31) that 

The binormal vector and its s-derivative are written as 

1 =pS"+p2+$h;+z;, 

K2 = (Pg-P#;)2+ (2P,#,+P#d2 +z& 

(3.32) 

(3.33) 

(3.35) 
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The inner product of (3.29) with t yields 
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-C+ QP2$,+ vz, = m ( P , - P 9 ; ) 2  + (2P,$,+ P9,,)2 + z;,1. (3.36) 

Evaluating the vector product of (3.29) with t ,  

Qpt x (e, x e,) + V t  x e, = - ~n + W ( K ~ ) ,  (3.37) 

we obtain, with the aid of (3.31) and (3.35), the following three equations 
corresponding to the e,, ep and e, x el, components. Only two of them are independent, 
but we show them all for later use: 

QPP, = -z,+ W(2P,2$,+PP,4,-PP,,$,+P2$,3)5, (3.38) 

- QPZ, + VP$< = - P& + P$; + Wl(P$,Z,, - 2P, 9, z, - P$,r Z f ) f  

- VP, = - 2P, $6 - P$5, + W[$&P$, z,, - 2P, $, 2, - P$,, 2,) 

- $&Pg- P$; 25- P&ll 

+ ( P g  2, - P$; 2, - P, @51. 

(3.39) 

(3.40) 

Equations (3.32) and (3.36), coupled with two independent equations of (3.38)-(3.40), 
are solved to determine the vortex shape as well as its translation velocity V and 
rotation rate 0. Although these equations seem fairly complicated in general, several 
simple particular solutions can be found. 

(i) The first example is the l-soliton solution already obtained in the previous 
subsection : 

(3.41) 

4 6 )  = 6-- 2q1 tanh (2q1 t ) ,  
P: + 4:: 

c = v = 4Lp1 - W(q: - 3p:) ] ,  

Q = 4(p :+q : ) ( l+4wp, ) .  

(3.43) 

(3.44) 

(3.45) 

(ii) The second example is the helicoidal vortex filament which is given by 

(3.46) 

assuming p = constant. In  this case, (3.32), (3.36), (3.38) and (3.39) become 

1 = p29; + zp, 

0 = - 21, + W(p'$,",,, 

-C+Qp2$,+ vz, = ;w(p";+p2$;,+2;,), (3.47) 

(3.48) 

- QPZS + VP$, = P 9 t  + WlP($, 7-5,- $6, z& + P$,3 4. (3.49) 

Integrating (3.48) and substituting it into (3.46), we notice that 

$, = p = const., z ,  = q = const. 

Equations (3.47) and (3.49) give, using (3.46), 

(f2 - pC) p'p + ( v- qC) q = iWpZp4, - (a - pC)  q + ( v - qC) p = p2 + Wp". 

Then we have, 
Q-pc = -p2q+ W(1. 2P 2 P 5 -p3q2), 

V - q c  = p2p3+;wp2p4q. 

(3.50) 

(3.51) 
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If the curvature K and the torsion 7 are used instead of p and q, we find, noting the 
relations K = pp2 and 7 = pq, that 

After substitution of (3.50) and (3.51) into (3.26), the helicoidal vortex filament of 
constant curvature K and torsion 7 is obtained: 

(3.52) 
K X=- (cos 8 e, + sin 8 ev) + Z e ,  

K2 + 7 2  

with 8 = $( 5) + Qt = (K2  + 7'); {S - [7 + w(7' - i K 2 ) ]  t }  -k $,,, (3.53) 

(3.54) 

Here, the axial-flow.effect appears only as correction terms in the translation velocity 
and the rotation rate. However, it  will be shown in the following subsection that the 
stability of a helicoidal vortex filament is profoundly affected by the presence of axial 
flow. 

(iii) The third example is Euler's elastica, which is a plane curve of nul-torsion. 
Assuming $ = 0 in (3.32), (3.36), (3,38) and (3.40), we have 

1 = p j + z ; ,  

-c+ VZ6 = iw(p;[+zj6),  
QPP6 = -zg, 

- bc: = W(Pc:c: 25- Pc: Z&' 

Integration of (3.57) with respect to 5 yields 

(3.55) 

(3.57) 

(3.56) 

(3.58) 

z f -  --1Q p 2 +2k2-1, (3.59) 

where k is a constant. After substituting i t  into (3.55), we have 

p;+(4Qp2-2k2+1)2 = 1,  (3.60) 

which admits a solution expressed in terms of the Jacobian elliptic function: 

p = 2Q-;kcn(Q;[Ik). (3.61) 

A dn-type solution is also possible, but it is unacceptable as a vortex filament for its 
represents a crossing curve in the plane. Integrating (3.59) with (3.61), we find that 

z = 5-2sz-;E(Q:gk)+z0, (3.62) 

where 
"" 

(3.63) 

The remaining equations (3.56) and (3.58) determine the slip speed C and the 
translation velocity V ,  respectively : 

c = VQ(1-2k2), 

V = - W Q .  

(3.64) 

(3.65) 
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Thus we obtain Euler's elastica: 
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X = 2O-i k cn (Ot [s + WQ(2k2 - 1)  t ]  I k )  x (cos Ot e, + sin Ot ey) 

+ {s - 2 WO ( 1 - k 2 )  t - 252-4 E(Oi [s + VO( 2k2 - 1) t ]  I k) + zo} e,. (3.66) 

It will be noted that the vortex filament only rotates without translation if W = 0 
(LIE), whereas it must translate with the velocity - WSZ if axial flow is present. 

All these solutions happen to provide curves of constant torsion, whose shapes are 
not affected a t  all by the axial-flow effect. This remarkable fact can be seen clearly, 
if we substitute I) = Kexp[i(70s-wot)] into the Hirota equation (3.13): 

(w0 -7; - w7;) K + (1  4- 3 v ~ ~ )  (K,, + i K 3 )  = 0, 

Kt + ( 2T0 + 3 WT;)  K,  - w( K,,, -k iK2K, )  = 0. 

These equations can be simplified, assuming 1 + 3W70 + 0, to  

(3.67) 

(3.68) 

Finally, we have 

with 

and 

(3.69) 

(3.70) 

( f j J ; - 7 ; ) K + K g + i K 3  = 0 (3.71) 

= s-C't (3.72) 

27,, + V w ,  + 8W7;( 1 + w70) 
1 + 3w70 

c'= , (3.73) 

(3.74) 

We can see that the axial-flow effect is absorbed in the coefficients C' and w i ,  causing 
modification of the translation velocity and the rotation rate without changing the 
shape of distortion. 

The case 1 + 3W70 = 0 is rather special, where the curvature K obeys the modified 
KdV equation ; 

(3.75) 
1 

370 
Kt + 'To K, + - (K,,, + iK2K, )  = 0. 

Since the modified KdV equation admits the N-soliton solution, we have the N- 
soliton solution of constant torsion T~ = - 1/(3w) as a special class of the solution 
obtained in $3.2. It is shown in the following subsection that the vortex with this 
particular torsion plays a key role in the stability analysis of a helicoidal vortex 
filament. 

3.4. Linear stability of a helicoidal vortex filament 
It is of interest to study the stability of the particular solutions. In  particular, the 
stability of a helicoidal vortex filament is important from a practical view point and 
many investigations have been made of a vortex without axial flow. I n  this 
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subsection, we elucidate the second-order axial-flow effect on the linear stability of 
a helicoidal vortex, on the basis of (3 .1) .  

Substituting (1.4) into (3 .1) ,  we have the intrinsic equations that describe the time 
evolution of the curvature K and the torsion 7 :  

Kt + 2K, 7 + K7, - v ( g K 2 K ,  + K,,, - 3K, 7’ - 3K77,) = 0, (3.76) 

+ 3 ( 9  +7,,,-3727, = 0.  (3.77) 
8 1 

If the steady solution K = K ~ ,  7 = T~ is perturbed as K = K,+U cos (ks -w t ) ,  7 = T~ + 
b sin (ks -w t )  and only linear terms are retained in (3.76) and (3.77),  we can show that 
the perturbation obeys the following dispersion relation : 

0 = 2kT0 + Wk(k2 + 37; - i K ; )  & 11 + 3W7J k(k2 - K;):. (3.78) 

When W = 0 on the right-hand side, this reduces to the dispersion relation obtained 
by Betchov (1965) in the case without axial flow. He found that the helicoidal vortex 
is unstable to perturbations of wavelength longer than 2 7 t / ~ ~ .  The modification due 
to the presence of the axial flow W occurs as follows. If W70 > 0 or W70 < -8, 
the amplification rate of the unstable mode increases. On the other hand, if - %  < 
W T ~  < 0, the amplification rate decreases. The most remarkable fact is that a 
helicoidal vortex with torsion T~ = - 1 / ( 3 W )  is neutrally stable to any small 
perturbations. Thus the axial flow in the vortex core seems to have a stabilizing effect 
for certain helicoidal vortices. In this connection, we would like to point out that 
Maxworthy et aE. ( 1985) observed several helicoidal vortices whose torsion fulfilled 
the condition W T ~  < 0, indicating a qualitative agreement with our prediction. 

Following Betchov (1965), we may interpret this stabilizing mechanism with the 
help of the analogy between the intrinsic equations (3.76) and (3.77) and the fluid- 
dynamical equations governing the motion of a one-dimensional compressible fluid. 
If we retain only the nonlinear effects, discarding all the terms of higher derivatives, 
(3.76) and (3.77) are reduced to the form 

A, + (TA),-~WAA, = 0, (3.79) 

where 

(3.80) 

h = K2 (3.81) 

3W 
A ( T ,  + TT,) -+[( 1 + ~ W T ) ~ A ~ ] ,  +-A: 4A T, = 0, 

T = 27(1 +$WT). (3.82) 

Aside from the last terms, we can regard (3.79) and (3.80) as equations of one- 
dimensional gas dynamics, where A and T correspond to the density and the velocity, 
respectively. The last terms represent only a slight modification of the convection 
velocity of A and T.  The term playing the role of the pressure is 

p = -a( + 1 + 3 W ~ ) ~ h .  (3.83) 

This implies that the pressure decreases as the density A increases if 1 +3W7 + 0. In 
other words, the fluid is acted on by a pressure force directed towards the region with 
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larger density, which causes the instability. This destabilizing pressure effect should 
be weak, if the value of the torsion fluctuates slightly around T,  = - 1/(3m). 

However, some caveats should be emphasized in making predictions. These results 
pertain to a local model and the relevance of the new LIE to the full three- 
dimensional Euler equation or even to the Moore-Saffman equation remains unclear. 
In  fact, the stability of a vortex filament is sometimes too delicate to be described 
by the local model. For example, the Crow instability (Crow 1970) of two anti- 
parallel vortex filaments is not found under the localized induction approximation, 
since this instability is caused, essentially, by non-local effects. In the next section, 
we evaluate the influence of non-local induction on the stability of a helicoidal vortex 
filament with a view to consolidating our prediction. 

4. Influence of the entire filament on the stability of a helicoidal vortex 
filament 

When we deal with the motion of a thin vortex filament whose lateral excursion 
is not small, it is reasonable to carry out the Biot-Savart integration. The question 
of the effect of non-local induction on the stability of a helicoidal vortex filament was 
first addressed by Levy & Forsdyke (1928) in this way. Unfortunately the Biot- 
Savart integral necessarily entails the logarithmic divergence for the induced 
velocity on the filament itself, thus requiring subtle treatment of the vortex core. 
Their inadequate treatment of the singularity misled them to erroneous conclusions 
in some respects. A quite reliable procedure, called the ' cutoff' method, was devised 
by Crow (1970) and was refined by Widnall et al. (1971) and Moore & Saffman (1972). 
Its heart is to remove the singularity by introducing a cutoff, chosen so as to 
establish the known local steady velocity field (Saffman 1970; Widnall et al. 1971). 
We should bear in mind that this method, when applied to a vortex filament with 
large centreline deformation, still remains ad hoc. 

Resorting to it, Widnall (1972) conducted an elaborate calculation of the stability 
of a helicoidal vortex, and she found three kinds of instability mode, one of which 
corresponds to that predicted by the local-induction model, i.e., the long-wave 
instability mode. This study, however, considers only the first-order effect of 
curvature. At the first order, the axial-flow effect is equivalent to thickening of the 
vortex core and consequently it acts to decrease the amplification rate of the long- 
wave mode. In this section, we extend Widnall's approach to the second order and 
the influence of the axial current is clarified when non-local induction is taken into 

4.1. A cutof method extended to second order account. 

Let us consider an isolated infinite vortex filament with constant curvature and 
constant torsion which winds around a cylinder surface with radius R. Choose the 
Cartesian coordinates (2, y, z)  or the cylindrical coordinates ( p ,  #, z), both fixed in a 
rest frame, with the z-axis along the central axis of the cylinder. In these coordinate 
systems, the helicoidal filament rotates about the z-axis with angular velocity Q and 
translates in the z-direction with velocity V, without change of form. We introduce 
a parameter K so that the tangent of the angle p of the vortex centreline from the 
horizontal satisfies the relation t a n p  = (IN)-'. Thus the unperturbed filament X, = 
X, ,  Yo, 2,) is given in the form : 

X,=Rcos(K'(+SZt), Y,=Rsin(K'(+SZt), Z,=(ai+VAt, 

where cr, = 1/(1 +K2R2)t and K' = KaE = K/(1  +K2R2).  The pitch of helix is 2w/K. 
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We subject this filament to small perturbations in both normal and binormal 
directions expressed by 

- cos qi a. sin qi 
n =  -sin# b =  -(rocosqj , ( 0 1' ( RKcr, ) 

where qj = K'g-i-Dt. The perturbed filament X = (X, Y ,  2) is written, in column- 
vector notation, as 

R cos qj R K  sin qj 
X =  Rsinqj +EeikE -RKcosqi +p"eikt sin# . (4.3) 

(fcr:+V,t) ( R2K2a: ) ('"R") 
If we define Xrel to be the velocity of the vortex filament looked at in the coordinate 
system which rotates about the z-axis with angular velocity SZ and simultaneously 
translates in the z-direction with velocity V,, then we deduce from (4.3) that 

Xre, = X -  Qe, x X- V ,  e, 

R K  sin q5 
= leikt -RK cosqi +$eikC sin4 . 

. ( R2K2a,2 ) Em) (4.4) 

Since we intend to perform the linear stability analysis, we set c, p" oc eut. In  this case 
the right-hand side of (4.4) becomes simply a(X-Xo) .  

The crucial step is to carry through the calculation of A?, D and V, in (4.4). The 
quantity X is the self-induced velocity due to the entire perturbed filament. We 
exploit the Moore-Saffman equation with an appropriate cut-off introduced into the 
logarithmically divergent BiotSavart line integral. Inspection of (2.79) convinces us 
that Widnall's formula gives way to the following one: 

-I[ 2R 1; rw(O)w(O) dy] t x ( ~ b ) , .  (4.5) 

Here Z0)(5,t) is the induced velocity, valid to the first 
following integral : 

$ 0 )  = -_ 

where In ( I , )  = In (+)+$-A(') ,  

J 

order, supplied by the 

with 

and the symbol [ I , ]  signifies that we cut the line integral off an arclength I, on either 
side of the point f under consideration. The effect of the axial velocity is present in 
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the cutoff parameter also, as seen from (4.7) and (4.8). The second term on the right- 
hand side of (4.5) is the contribution coming from the change in the cutoff length 1, 
owing to the vortex-line stretching. We have taken advantage of the result that the 
logarithmic singularity necessarily appears like - (T'/4x) In (1,)  in accord with the 
LIE (1.4). It should be remembered that the time-advancement of the leading-order 
velocities do) and do) is described by (2.80)-(2.82) and that the development of Ghl) 
and the total length Z(t) is described by (2.89) and (2.90) under the constraint (2.92). 

The success of the evaluation of the induced velocity (4.5) hinges on the accuracy 
of the integration occurring in A$''. Differentiation of (4.6) with respect to  5 results 
in 

In S = In - -A(') + t - p"K2R eikE/ui, 
( 2 3  

because of the relation 

(4.10) 

(4.11) 

and the notation X' = X(c, t )  is understood. The second integrand of (4.9) includes 
terms proportional to lXo-Xb, when expended in the perturbation amplitudes 5 
and p", which brings about strongly singular behaviour. A way round this difficulty 
is to  make use of partial integration to  convert (4.9) into the form 

- 3[(X-X). (X,-Xr)]  [(X-X') 
IX- xi5 

From (4.10), we get 

(4.12) 

(4.13) 

The procedure to obtain the second term of (4.5) is the following: since the 
dependence of GV) on r remains unknown, we have no choice but to  think of it 
as 

- f [ JOm rw(O) dr] E @ K ~ .  (4.14) 
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Integration of (2.89) yields 

399 

(4.15) 

The time-variation of the total arclength given by (2.90) is written, to the second 
order in curvature effect, as 

(4.16) 

For our configuration of the helicoidal filament, we have, after several manipulations, 

$0). t 5 a e'kt. (4.17) 

Hence it is a rational assumption that 

l ( t )  = l(0) = const. for k + 0. (4.18) 

It is obvious that the helicoidal vortex is neutrally stable to perturbations with k = 
0. Notice that the absence of vortex-line stretching is inherent in the linear stability 
analysis. For finite-amplitude perturbations, the vortex filament goes through 
significant line stretching, as a consequence of which its time evolution might be 
greatly different from the prediction of the linear analysis. The first term Q,, = t . & O )  

and the second integral are divided into two parts: the constant terms and those 
proportional to eikE. In  view of the stipulation (2.92), we discard the constant terms, 
retaining only the latter ones. Thus we complete the prescription. 

The calculation is carried out in much the same way as Widnall (1972). Without 
loss of generality, we may consider the specific point X ( f , t )  whose arclength 
parameter E fulfils the relation K'[+Qt = 0 at some instant t .  It follows from (4.3) 
that some of the necessary formulae for position vectors are 

x' = ( R C O S ~ )  ( R K s i n 6  ) (co ;~)  (4.20) 
Rsin6  +[e'"c -RKcos$ +p"eikc sin+ , 
+ VA t R2K2a: 

- RK' sin 6 
R K  cos 6 

R K 2  cos $+ ikRK' sin 6 
+ leikc RKr2 sin 6- ikRK cos 6 X;. = 

vt ( ikR2K2vi 

(4.21) 
( - K  sin 6; ik C O S ~  

+peikf' Kcos$+iksin$ 

where 6 = K(c-6). 
The next step is to substitute these formulae into ( 4 4 ,  (4.6) and (4.12), and to 

expand the resulting expressions in powers of [and P to first order. The explicit form 
of the induced velocity is not written out in full because the resulting expressions are 
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too lengthy. For convenience, we present the representations only of the angular 
velocity SZ and the translational velocity V, of the unperturbed filament, including 
the second-order effect : 

1 - cos $-Kcsin $ 
W,U;( - K 3 + S 2 K 5 ) ,  (4.22) 

d J  
l-cos$ 

1-cos$-K'[sin$ - - Wl R 2 K z  I -, td[+$W2R2u:K5, (4.23) 
--a, [2R2( 1 - cos $) + uo fl  ] 

where $ = K 5  and 

(4.24) 

The singular integrals that  we encounter are treated in the same way as Widnall ; the 
piece of length 28 centred on [ is subtracted off the integrand. The proper choice of 
S is given by (4.10) but in most cases it is sufficient only to take 

(4.25) 

The small change of 6 due to perturbation p" has no influence on $" except for a small 
correction term 

(4.26) 

Now we have a vector equation for [and 6. Taking the scalar product of (4.4) with 
b and n at 6 and assuming that [, oc eat, we get a set of equations coupling [and p". 
They constitute a linear eigenvalue problem for a. 

We non-dimensionalize the result based upon the cylinder radius R and the 
characteristic velocity Tl(4nR). The dimensionless amplification rate ti is then 
defined as 

and the parameters characterizing the axial velocity are 

J/=p --wl, 47F w --w,. 47F - TR - TR 

(4.27) 

(4.28) 

In  general, the normalized amplification rate d is a function of k, RK, a l R  and Wl 
(or W,). It is not difficult to confirm that ti = d ( k ;  RK, Wl, a / R )  has the following 
symmetries : 

d ( k ;  -Rk, Wl ,a /R)  = - d ( k ; R K ,  -W,,a/R),  

a ( - k ; R K , W l , a / R )  = - d ( k ; R K , W l , a / R ) ,  

d ( - k ;  -RK, Wl ,a /R)  = d(k ;RK,  -W,,a/R).  

(4.29) I 
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We therefore restrict the range of the parameters to 

k 2 O  and K > O .  (4.30) 

In  other words, we restrict our attention to right-handed helices or those of positive 
torsion K .  

4.2. Results 

To facilitate the comparison with the first-order results, we take, as the basic velocity 
profiles, Rankine's vortex with a top-hat jet core. I ts  velocity profiles are 

Introduction of (4.31) into (4 .8)  produces 

where V =  I'/(27ca) is the maximum swirl velocity. 
become 

w l = - ,  aW v2=m. aW 

for O < r < a  
for r > a . (4.31) 

(4.32) 

The parameters wl and v, 

(4.33) 

The computation of d is implemented for various pitch angles t a n p  = (RK)-l and 
a / R  with the velocity ratio W / V  ranging from moderate negative values to moderate 
positive values. The numerical integration of the regularized Biot-Savart integral is 
done by making use of a standard fast-Fourier-transform subroutine. In  an effort to 
confirm the correctness of our procedure, we have checked that the terms 
proportional to -In a of the induction velocity do agree with the generalized 
localized induction equation (3 .  l),  numerically as well as analytically. 

In  order to gain an insight into the general features of the effect of the axial flow, 
we first discuss the case of t a n p  = 1 at some length. Figures 4(a)  and 4(b )  show the 
values of the amplification rate d plotted against the normalized wavenumber k / K  
for a / R  = 0.1 and various velocity ratios ((a) for W/V < 0 and ( b )  W / V  2 0). Figures 
4 ( c )  and 4 ( d )  show the case of a / R  = 0.33 for ( c )  W/V < 0 and ( d )  W/V 2 0. The 
quantity k / K  has the simple meaning that it equals the number of waves in one 
period of a helicoid. When the axial flow is absent, the values obtained by Widnall 
(1972) are restored, which are represented by dashed lines. Corresponding to  them is 
the long-wave instability mode. 

We observe from figure 4 ( a )  that  the amplification rate of the long-wave mode 
monotonically decreases as W / V  decreases from zero and that the long-wave mode 
disappears completely below some value of W/V a little less than - 1 .  If we further 
decrease W/ V ,  the short-wave instability mode comes out at smaller wavenumbers, 
whose growth rate decreases with W/V.  Eventually the short-wave instability mode 
intrudes into the long-wave range, i.e. k / K  < RKa,, at some value of W / V  a little 
less than -1.5. In contrast, in the case of W/V 2 0 (figure 4b) ,  the long-wave 
instability strengthens when W / V  is slightly above zero. But further increase of W / V ,  
in turn, reduces the amplification rate and the long-wave mode again subsides at 
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FIGURE 4(a, b) .  For caption see facing page. 

moderate values of W/V.  The magnitude of W / V  a t  which the long-wave mode first 
vanishes is larger when W/V > 0. The later stage of the development of the short- 
wave mode, associated with the increment of W / V ,  is similar to the former case 
W / V  < 0 except that here lW/Vl is larger. The long-wave mode reappears a t  some 
value of W / V .  Turning to  figure 4(c ) ,  we notice that thickening of the vortex core 
reduces the amplification rate of this mode and considerably promotes its 
stabilization. Indeed, for a / R  = 0.33 and W / V  < 0, the disappearance of the long- 
wave mode takes place a t  values of lW/Vl much smaller than those for the case of 
a / R  = 0.1. With regard to  the short-wave mode, the manner in which it approaches 
the long-wave regime a t  larger values of I W /  VI and the re-establishment of the long- 
wave mode occurs is similar to the case of a / R  = 0.1 if the magnitude of W/V is 
appropriately shifted. Comparing figures 4(b)  and 4 ( d ) ,  we find that the destabilizing 
effect of the small positive axial velocity is more prominent for the case of 
a/R = 0.33. 

Let us compare these results with those of the local-induction model. The 
helicoidal vortices considered here have positive values of torsion T = K .  The local- 
induction equation predicts that  for 7 > 0, the helicoidal vortex is stabilized only at 
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FIQURE 4. Non-dimensional amplification rate, for helices with the pitch angle tanp = 1 and 
typical values of a / R  (the ratio of vortex-core radius to cylinder radius), as a function of k / K  waves 
per cycle. The values of the ratio W/V of axial-to-swirl velocity are indicated on each curve. The 
dashed line is Widnall's (1972) result for W/V = 0. (a )  a /R  = 0.1, W/V < 0 ;  (b )  a / R  = 0.1, W/V > 
0; (c) a / R  = 0.33, W/V  < 0 ;  ( d )  a /R  = 0.33, W/V > 0. 

the special value of W / V  that is negative. In the cutoff model, there exists a range 
of W / V  ( < 0) for which the long-wave instability mode is absent. This band is not 
as wide and we may understand that the agreement is quite good between two 
models. The crucial difference lies in the case W / V  > 0. In the local-induction 
approximation, the amplification rate monotonically increases with W /  V. In the cut- 
off model, it increases for small W/V,  a tendency is consistent with the former model, 
but it decreases for larger values of W /  V and stabilization of the long-wave mode also 
occurs in a finite range of W/V.  The source of the stabilization may be traced back 
to the dependence of the cut-off parameter on the velocity distribution as indicated 
by (4.7) and (4.8). the local-induction approximation disregards this point and it 
assumes merely that the parameter, dependent on the internal core structure, is a 
positive constant. This failure is discussed further in the next subsection. 

The local model does not predict the short-wave instability mode. This is not the 
case with the cutoff model. Our method relies upon asymptotic expansions in powers 
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FIGURE 5. As figure 4 but with tanp = 0.3. (a) a /R  = 0.33, W / V  ,< 0 ;  ( b )  a/R = 0.33, W/V 2 0. 

of the small parameters a K ( K  = R K 2 / a i )  and ak. In  effect, the instability of short 
wavelength of order a predicted by the cutoff approximation is spurious, which was 
exemplified by Moore & Saffman (1974). An analysis of the Euler equation for a 
vortex filament with no axial flow shows that, in the short-wavelength range, only 
bending modes with a more complex core structure are unstable (Widnall, Bliss & 
Tsai 1974; Moore & Saffman 1975; Tsai & Widnall 1976; Widnall & Tsai 1977; 
Saffman 1978). The short-wave mode which our cut-off model deduces may also be 
a result of an unjustified extrapolation. 

There is another point that we must be cautious about. In  view of the dispersion 
relation (2.108) and the full equation (4.5), the measure of the relative significance of 
the second-order terms to  the first-order ones is given by vl or F.. Hence our 
asymptotic expansions, upon which the cut-off method is based, rest on the smallness 
not only of K a  and ka but also of ( W / V )  K a  and ( W / V )  ka. The band of stability in the 
long-wave regime emerges for values of Wl and W2 not very small in comparison with 
one. Moreover, if the cancellation of the long-wave mode occurs due to the weakness 
of the induction of both the first and the second orders, which is plausible, then we 
cannot dismiss the possibility that the ignored terms of higher orders might play a 
dominant role and render our result invalid. In any event, the disappearance of the 
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FIGURE 6. As figure 4 but with tanB = 0.2. (a )  a /R  = 0.33, W / V  ,< 0; ( b )  a/€? = 0.33, W / V  2 0. 

long-wave instability mode is marginal. In the following subsection, we discuss its 
validity. 

Keeping these limitations of the approximation in mind, we proceed to the cases 
of helices with smaller pitch. Figures 5(a)  and 5 ( b )  show the amplification rate for 
helices with t anp  = 0.3 and a/R = 0.33. Figures 6 ( a )  and 6 ( b )  exhibit the case of tan 
p = 0.2 and a/R = 0.33. The tendency of the stabilizing or destabilizing effect of the 
axial flow on the long-wave mode is the same as the case of tanp  = 1. However, the 
non-local induction becomes stronger as the pitch decreases and the complete 
cancellation of the long-wave mode is unattainable. 

Widnall(l972) discovered the third instability mode, called the mutual-inductance 
instability mode. This mode is considered to originate from the mutual inductance 
between the successive turns of the helix. It has a peak at k / K  = 1.5 for tanp  = 0.3 
and has two peaks at  k/K' = 1.5 and 2.5 for t anp  = 0.2. The cutoff model may not 
portray these parameter regions accurately and it is sometimes difficult to 
discriminate between the mutual-inductance and the short-wave modes. The general 
trends of this mode, we speculate, are as follows : for a/R = 0.33, as opposed to the 
long-wave mode, the addition of the negative axial velocity W / V  < 0 makes the 
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FIQURE 7. Stability boundary in the (RK, W/V)-plane when the long-wave instability mode wholly 
vanishes. Crescent-shaped areas enclosed by two arcs denote the stability regions. (a) a /R  = 0.1 ; 
( b )  a /R  = 0.3. 

amplification rate larger and a t  a certain negative value of W/V it merges with the 
short-wave mode. Below some value of W/V the resulting amalgamated mode 
shrinks. For W / V  2 0, the mutual-induction mode first shrinks and later grows as the 
axial velocity becomes larger. The later stage is similar to the case of W / V  < 0. The 
major difference between the cases of tan/? = 0.3 and 0.2 is that in the latter case the 
mode located in the range 1 < k / K  < 2 begins to  shrink in the presence of negative 
W/V small in magnitude. 

In  figures 7 (a) and 7 (b), we present the stability boundaries for the long-wave 
mode for various ratios a / R  = 0.1 and 0.3, respectively. The narrow regions of a 
deformed crescent shape bounded by two curves designate the parameter range in 
which the long-wave mode is suppressed. the judgement of whether an instability 
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FIGURE 8. Stability boundaries in the ( k / K ,  RK)-plane for a fixed W / V .  The values of the ratio 
a /R  of core to cylinder radi are indicated on each curve. Areas above the boundaries, except in the 
immediate neighbourhood of the origin, denote the instability regions. (a) Rankine’s vortex aa 
defined by (4.31) with W/V = -0.4; (b) Rankine’s vortex with W / V  = 0.4; ( c )  Burgers’ vortex aa 
defined by (2.93) and (2.94) with the parameter values given by Maxworthy et al. (1985). 
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FIGURE 9. First branch of the dispersion relation for bending waves on Rankine’s vortex (4.31) for 
different values of W/V (the ratio of axial to swirl velocity). The dashed line is the second-order 
formula (2.108). the dotted line is the first-order formula. (a) W / V  = 0.5; ( b )  W / V  = 1.0; ( c )  
W / V  = 1.5; (d )  W/V = 2.0. 

mode belongs to the long-wave mode or not is somewhat subjective around the 
parameter value where the long-wave mode reappears, and TVl and W, are not very 
small in comparison with one in such a region. Therefore the second critical values 
a t  which the long-wave mode reappears may not always be precise. It is noted that 
another instability mode sometimes appears very close to the long-wave regime in 
the parameter range of the stability window. The stability window does not 
necessarily imply that the helicoidal filament is stable against all perturbations of 
moderate and long wavelengths. 

We see from figure 7 (a) that  one stability window exists on each side of negative 
and positive W / V .  At a fixed value of RK, the window of negative W / V  is closer to 
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the abscissa and has wider range of W / V  than the positive side. As the pitch becomes 
smaller or the neighbouring turns gather closer, the destabilizing effect of non-local 
induction predominates over the stabilizing effect of axial flow so that the stability 
window disappears above some critical value of RK. The critical value is larger for 
W / V  < 0.  The extrapolation of the boundary curves toward RK = 0 may lead us to 
the suspicion that the straight vortex tube (RK = 0) is unstable to long-wavelength 
perturbations for most values of W / V .  In reality, the amplification rate becomes 
smaller as the pitch becomes larger and it will tend to zero in the limit of RK +- 0.  We 
interpret this to mean that the straight vortex is stable against long-wavelength 
perturbations. The remarkable feature of figure 7 ( b )  is that there exist two stability 
windows for W / V  < 0, though our approximation may cease to be valid in the second 
window because W, and v, are not small. Comparing figures 7 ( a )  and 7 (b) ,  we observe 
that for fatter vortex cores, the band of stability occurs at values of W / V  smaller in 
magnitude and is wider in both W / V  and RK. In short, helicoidal filaments with fat 
cores can easily undergo stabilization by the action of axial flow, as far as the long- 
wave mode is concerned. 

To illustrate the dependence of stability characteristics on wavenumbers, we 
display in figures 8(a )  and 8 ( b )  the neutral stability curve as a function of k / K  for 
several vorte:. x r e  radii. We fix the value of the velocity ratio as W / V  = -0.4 in 
figure 8 ( a )  and W / V  = 0.4 in figure 8 ( b ) .  For the most part, the helicoidal filament 
of that core size is unstable above the boundary but in the small regions located close 
to the origin it is unstable below the boundary. We see that for a fat core, there 
appears a band of RK in which the long-wave instability mode is excluded. This band 
is possible for vortices with smaller core size and is wider, at the same value of 
magnitude of W / V ,  when W / V  < 0 than when W / V  > 0 .  As regards the mutual- 
inductance mode, the critical value of RK at which i t  first emerges for a given value 
of k / K  is a little smaller for W / V  = -0.4 than for W / V  = 0.4. It is noteworthy that 
the mutual-inductance as well as the long-wave modes are prohibited in the band 
mentioned above. 

For comparison with the experiment conducted by Maxworthy el al. (1985)’ we 
illustrate in figure 8 ( c )  the stability boundaries for velocity profiles (2.93) and (2.94) 
of Burgers’ vortex with parameters chosen to fit data in their experiment. The global 
feature resembles that of Rankine’s vortex with W / V  = -0.4 (figure 8a) .  The broad 
band of absence of the long-wave mode is conspicuous. By using the indicated values 
of the geometric parameters (RK = 0.23 and a / R  = 0.83), we have checked that the 
observed helical vortex is stable to perturbations of long wavelength. 

4.3. Discussion 
The results obtained in $4.2 are, if we limit ourselves to the long-wave instability 
mode, summarized as follows : the presence of axial flow within the core brings about 
asymmetry of stability characteristics between right- and left-handed helices. When 
its magnitude is not large enough, the axial velocity acts to stabilize left-handed 
helices and destabilize right-handed ones if the helicity is positive. For negative 
helicity, the opposite is true. When the magnitude is larger than some value 
dependent on a / R  and RK, the axial velocity acts to reduce the amplification rate of 
helices of both senses. The suppression of the long-wave mode is established at 
moderate values of IW/Vl, the critical value of which is smaller for left- (right)- 
handed helices if helicity is positive (negative). This property is novel. The parameter 
values for the occurrence of the suppression, unfortunately, appear to be marginal if 
we are reminded of the assumptions about the asymptotic expansions, i.e. a K  + 1 and 
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vl, W ,  < 1. This result might be wholly due to  the unreasonable truncation of the 
expansions. 

One of the available formulae valid in the entire range of both wavelength and 
axial velocity is the linear dispersion relation for Rankine's vortex obtained by 
Krishnamoorthy (1966) and Lessen, Deshpande & Hadji-Ohanes (1973) (see also 
Moore & Saffman 1972), though i t  is applicable only to waves of infinitesimal 
amplitude on a straight vortex column. As is well known, the dispersion relation 
admits an infinite number of branches even if we confine ourselves to the bending 
waves. The relevant mode in question is the primary bending mode, the frequency of 
which vanishes a t  zero wavenumber. As an attempt to  substantiate our prediction, 
we make a comparison between the exact dispersion relation of the first branch and 
its asymptotic formulae provided by (2.108). 

Figure 9(a-d) displays the normalized frequency as a function of the normalized 
wavenumber for different velocity ratios (for W/V = 0.5, 1.0, 1.5 and 2.0 
respectively). The dashed and dotted curves are asymptotic formulae correct to  
second and first orders, respectively. Apart from the case W / V  = 2.0, the agreement 
is acceptable for Ikl a up to  about 0.3, the second-order formula being closer to  the 
exact one as expected. Roughly speaking, the window of suppression of the long- 
wave mode occurs for Ikl a < 0.1, K a  < 0.3 and IW/Vl 5 2.0, except that another 
window appears for IW/Vl > 2.0 when a / R  = 0.3. In  this respect, our approximation 
is reliable. 

Even the first-order formula is not a bad approximation in the same parameter 
range. Calculation on the stability of the helicoidal vortex is performed using the 
same cutoff approximation as Widnall (1972). The only difference is that (4.8) 
includes a term proportional to the square of the axial velocity in our first-order 
model. The numerical results demonstrate that  the stability window indeed exists in 
the first-order cutoff model also, but without the second-order terms, the axial 
velocity cannot detect the difference of stability between a right- and a left-handed 
helix and the critical value at which the window first appears is located between 
those for a right- and a left-handed helix in the second-order cutoff model. Hence the 
extension of the asymptotic expansions to second order is not essential for the 
existence of the stability window. But i t  is more accurate than the first-order one, 
capturing the asymmetry, and is therefore preferable. 

More remarkable is that  a wavenumber region in the neighbourhood of the origin 
appears a t  moderate values of velocity ratios W /  I' where the frequency becomes 
extremely small. For example, it appears to the left of the origin for W / V  = 1.0 and 
on both sides of the origin for W/V = 1.5. 

As for long or short waves on a straight vortex filament subjected to a strain field, 
which serves as a model for the understanding of the vortex-pair instability or of the 
short-wave instability on a vortex ring, the self-induced rotation of the sinusoidally 
perturbed filament tends to stabilize the vortex against distortion by the imposed 
strain (Crow 1970; Widnall et al. 1974; Moore & Saffman 1975). The asymptotic 
theory fails to  describe the short-wave instability because the self-induced velocity 
vanishes, spuriously, at a wavenumber comparable to  the core radius, which predict 
the spurious instability. 

On the other hand, if we compare the numerical results of $4.2 with the dispersion 
relation, i t  is highly likely that the slowing down of the self-induced velocity owing 
to the inclusion of axial flow renders the instability weak and that the cancellation 
of the long-wave mode is accomplished when the induced velocity becomes quite 
small over the whole long-wave regime. This is not a proof but i t  is a natural 



Three-dimensional distortions of a vortex $lament 41 1 

0.5 

1 .o 

~ 

- 1.0 -0.5 0 0.5 1 .O 

ka 

FIGURE 10. Variation of the dispersion relation of the first bending mode with W / V .  The values of 
W / V  are indicated on each curve. The dashed line corresponds to W / V  = 0. 

conclusion to draw. For example, we may refer to the fact that the amplification rate 
of disturbance grows as the pitch of the helicoidal filament becomes smaller and thus 
the self-induction is stronger. The helicoidal filament whose self-induction is quite 
small owing to the axial velocity may be identified with a straight vortex. It is 
illuminating to illustrate the variation of the dispersion relation with W/V.  We show 
it in figure 10. The termination of the curves implies that, for short wavelengths, real 
frequency ceases to be allowed and is replaced by a complex root, corresponding to 
the Kelvin-Helmholtz instability. The variation of the frequency in the small- 
wavenumber range is, surprisingly, in accord with that of the amplification rate of 
disturbance on a helicoidal filament in the cutoff model. The curve for W/V = 0.2 
seems to account for the destabilization of a right-handed helix and the stabilization 
of a left-handed helix with positive helicity. Above some value of W / V ,  the frequency 
tends to diminish with W/V for both senses of helices, reflecting the decrease of the 
amplification rate. The striking feature is the appearance of the wide wavenumber 
range on either side of origin over which the curve tangents approximately to the 
abscissa when W / V =  1.5. Incidentally, we note that the zeros of the frequency 
occurring closer to the origin than the exact one but belonging to short waves in the 
asymptotic formula for small W / V ,  as shown by figure 9(a ) ,  will be irrelevant to the 
existence of the stability window, because they are located outside the parameter 
range corresponding to the window. 

The behaviour of the dispersion relation helps in understanding why the local- 
induction approximation is incapable of capturing the stabilization of a right(1eft)- 
handed helix with positive (negative) helicity by the action of the axial velocity. For 
this, it is informative to have a look at the asymptotic formula (2.108) supplemented 
by (2.106). The reduction of the frequency is because the constant C,  depends on 
-log Jkl and - (W/V)2 .  In the localized induction approximation, however, we set C,  
merely to be a positive constant and reduce the dispersion relation to a simple third- 
order algebraic equation in the wavenumber, as is evident from (3.13) or (3.14). The 
lccal-induction approximation thus fails to suppress the long-wave mode of 
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right(1eft)-handed helices with positive(negative) helicity . As pointed out by 
Leibovich (1970) and Pritchard (1970), the logarithmic dependence of the dispersion 
relation on the wavenumber is due to the irrotational motion of fluid outside the 
vortex core in an unbounded space and the governing equation for very long waves 
is then superseded by a nonlinear integro-differential equation. Leibovich et al. (1986) 
derived such an equation for bending waves, though it is limited only to small 
perturbations on a straight columnar vortex. The construction of an integro- 
differential equation applicable to large-amplitude bending waves will be an 
interesting extension. 

The asymmetric influence of the axial velocity upon helical waves on a vortex 
filament has already reported by Lessen, et al. (1973) and Lessen, Singh & Paillet 
(1974). Finally we comment upon the relation between our results and theirs. At first 
sight, our results on the stability of a helicoidal filament may seem to have much in 
common with those of LSP on the stability of Burgers’ vortex. They deal with small- 
amplitude bending waves on a straight vortex with axial flow whose velocity profiles 
are Gaussian. A straight vortex tube is stable to long-wave perturbations, which is 
different from a helicoidal vortex. In fact, the bending waves of instability found by 
them have wavelengths comparable with the vortex core as long as the axial velocity 
is not very large in magnitude. This is a pronounced difference. This short-wave 
instability mode is analogous to the Kelvin-Helmholtz instability. It depends on the 
detail of the core structure, which is illustrated by the difference between Rankine’s 
vortex studied by Lessen et al. (1973) and Burgers’ vortex studied by Lessen et al. 
(1974). There is a discussion on this point in the paper of Lundgren & Ashurst (1989). 
Our study and Lessen’s et al.’s (1973, 1974) are thus complementary to each other. 

5. Conclusion 
We have investigated, in this paper, the long bending distortions of a thin vortex 

filament with axial flow inside the vortex core. The equation of motion is derived by 
the method of matched asymptotic expansions up to the second order in the 
expansion parameter E = a, (vortex-core radius)/R, (typical radius of curvature) 
which is assumed to be sufficiently small. On the other hand, no restriction is placed 
on the wave amplitude. The resulting equation is identical to the Moore-Saffman 
equation. The dispersion relation for long infinitesimal waves on a Burgers’ vortex 
is calculated to the second order. It is found that the inclusion of the second-order 
terms achieves a great improvement in the approximation of the dispersion relation. 

If we neglect the non-local induction and the variation of the cutoff parameter L l a  
along the vortex filament, we can extract the new integrable equation (3.1), which 
is a natural generalization of the localized induction equation (1.2). This new 
equation is shown to be equivalent to the Hirota equation through Hasimoto’s 
transformation. 

The N-soliton solution is obtained explicitly, using the technique of the ‘soliton 
surface approach’ by Sym as well as Hirota’s method of bilinear form (Miyazaki & 
Fukumoto 1988). The form of the solution is the same as that of the LIE, if the 
pertinent dispersion relation is used. The helicoidal vortex and a form of Euler’s 
elastica are determined as examples of the vortex filament that translates and 
rotates steadily without changing shape. The axial-flow effect is found to modify the 
translation velocity and the rotation rate, leaving the distortion shape unaffected. 
The linear stability of a helicoidal vortex filament is studied based on the new 
equation. It is striking that the presence of the axial flow has a profound influence 
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on the stability and that a helicoidal vortex filament with the special torsion 
7,, = - 1/(3W) becomes neutrally stable against any small perturbations. 

In order to consolidate the prediction under the localized induction approximation, 
we have carried out a full calculation incorporating the effect of the entire perturbed 
filament. A cutoff method generalized to second-order in the curvature effect is 
devised to calculate the Biot-Savart integral. The numerical results show that, for 
the long-wave instability mode, the axial velocity W ,  if the ratio IW/VI of its 
magnitude to the maximum swirl velocity V is small enough, tends to stabilize left 
(right)-handed helices and to destabilize right (left)-handed helices if the given 
helicity is positive (negative). In the range of small IW/VI, the prediction of the local 
model coincides qualitatively with that of the cutoff model. The discrepancy 
manifests itself as IW/U becomes larger. Above some values of IW/U, the 
amplification rate of the long-wave mode diminishes for both right- and left-handed 
helices. The prohibition of the long-wave mode is established in a band of W / V ,  
provided that the pitch of the helix is not too small. The boundary values of the 
stability window depend on the pitch, the core radius and the sense (torsion) of the 
helix. The major difference between the two models is that, in the cutoff model, the 
suppression of the long-wave mode can be achieved by the first-order curvature effect 
alone, whereas the second-order effect is essential in the local model. The neglect of 
core structure and the non-local induction accounts for this failure. 

The authors are grateful to Professors H. Hasimoto and T. Kambe for illuminating 
discussions. The work of Y.F. was partially supported by a Grant-in-Aid for 
Scientific Research from the Ministry of Education, Science and Culture of Japan. 

Appendix A. Local cylindrical coordinates and the equations of motion 
In this Appendix we include the necessary formulae for the local moving 

curvilinear coordinate system and the equations of motion for an inviscid fluid 
rewritten in terms of this coordinate system. The details are contained in the paper 
of Callegari & Ting (1978). 

As introduced in $2.2, the position vector x in the fluid is given in terms of the local 
cylindrical coordinates ( r ,  8, s) by (2.4). In this system, e, = e,(8, s, t) ,  e, = e,(8, s, t)  
and t = t(s,t) constitute a set of orthonormal unit vectors centred on the nearest 
position X(s , t )  on the filament. The first two of them are given by 

e, = n cosp, + b sinp,, 

e, = bcosq-nsinp,. 

With the help of the Serret-Frenet equations (3.4), we get 

at 
as as as 

= Ksinvt, - = Kn. aer = -/Ccosp,t, - - 

Now we rewrite the Euler equations and the equation of continuity. It is sometimes 
convenient to specify the position along the filament curve by using the marker 
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variable 6 instead of s, which satisfies the condition (2.17). We may employ either 6 
or s as the arc-length parameter indistinguishably. The velocity V = (u, v, w) in the 
moving coordinate system is connected with the velocity u in the rest frame by (2.27), 
which is written with the dimensional variables as 

u = d+ v. (A 6) 

Here a dot denotes the time derivative with fixed r ,  0 and 6. further, the coordinate 
transformation is accompanied by the change of the time derivative : 

a a .  
at at 
- -+ - - (X+ re,)  - V,,,. 

Then the Euler equations are rewritten in the moving coordinate system as 

1 . d V  1 1 Z+ - (w - re, .  t )  X +- = - (p ,  e, +-PO e,+ ZP, 4,  
a dt r 

where 

I 1 1 
r h 

+ ~j + weg* i + uv, + - (V - re, e,) (we + u)  + - (W - re, * t )  [us + ~ ~ ( n - e ~ ) ]  + uC, - e, ee 

we 1 ~ + u e , ~ t + v e e ~ t + u w , + - ( ~ - r e ( , ~ e , ) + - ( w - r e , ~ t ) [ w ~ - (  V s n ) ~ ]  
r h 

{ 

with h defined by (2.6) : 
h = l-KrcosV, 

and 

The equation of continuity becomes, for an incompressible fluid, 
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